Skip Navigation
Skip to contents

PHRP : Osong Public Health and Research Perspectives

OPEN ACCESS
SEARCH
Search

Author index

Page Path
HOME > Articles and issues > Author index
Search
Chan Park 3 Articles
Cloning and Expression of Recombinant Tick-Borne Encephalitis Virus-like Particles in Pichia pastoris
Seok-Min Yun, Young Eui Jeong, Eunbyeol Wang, Ye-Ji Lee, Myung Guk Han, Chan Park, Won-Ja Lee, WooYoung Choi
Osong Public Health Res Perspect. 2014;5(5):274-278.   Published online October 31, 2014
DOI: https://doi.org/10.1016/j.phrp.2014.08.005
  • 2,078 View
  • 16 Download
  • 7 Citations
AbstractAbstract PDF
Objectives
The purpose of this study was to verify the feasibility of using the glyceraldehyde-3-phosphate dehydrogenase (GAP) promotor based Pichia pastoris expression system to produce tick-borne encephalitis virus (TBEV) virus-like particles (VLPs).
Methods
The complementary DNA encoding the TBEV prM signal peptide, prM, and E proteins of TBEV Korean strain (KrM 93) was cloned into the plasmid vector pGAPZɑA, then integrated into the genome of P. pastoris, under the control of the GAP promoter. Expression of TBEV VLPs was determined by Western blotting using monoclonal antibody against TBEV envelope (E) protein.
Results
Recombinant TBEV VLPs consisting of prM and E protein were successfully expressed using the GAP promoter-based P. pastoris expression system. The results of Western blotting showed that the recombinant proteins were secreted into the culture supernatant from the P. pastoris and glycosylated.
Conclusion
This study suggests that recombinant TBEV VLPs from P. pastoris offer a promising approach to the production of VLPs for use as vaccines and diagnostic antigens.

Citations

Citations to this article as recorded by  
  • De novo transcriptome sequencing and comparative profiling of the ovary in partially engorged and fully engorged Haemaphysalis flava ticks
    Yu Zhao, Zhe-Hui Qu, Feng-Chao Jiao
    Parasitology International.2021; 83: 102344.     CrossRef
  • Flavivirus vaccines: Virus-like particles and single-round infectious particles as promising alternatives
    Esmeralda Cuevas-Juárez, Victoria Pando-Robles, Laura A. Palomares
    Vaccine.2021; 39(48): 6990.     CrossRef
  • NS1 Recombinant Proteins Are Efficiently Produced in Pichia pastoris and Have Great Potential for Use in Diagnostic Kits for Dengue Virus Infections
    Mariana Fonseca Xisto, John Willians Oliveira Prates, Ingrid Marques Dias, Roberto Sousa Dias, Cynthia Canedo da Silva, Sérgio Oliveira de Paula
    Diagnostics.2020; 10(6): 379.     CrossRef
  • Tick-Borne Encephalitis Virus: A Quest for Better Vaccines against a Virus on the Rise
    Mareike Kubinski, Jana Beicht, Thomas Gerlach, Asisa Volz, Gerd Sutter, Guus F. Rimmelzwaan
    Vaccines.2020; 8(3): 451.     CrossRef
  • Virus-Like Particle Systems for Vaccine Development Against Viruses in the Flaviviridae Family
    Wong, Jassey, Wang, Wang, Liu, Lin
    Vaccines.2019; 7(4): 123.     CrossRef
  • ON MODERN APPROACHES TO CREATION OF A SINGLE-CYCLE VACCINE AGAINST TICK-BORNE ENCEPHALITIS
    V. A. Lashkevich, G. G. Karganova
    Problems of Virology.2018; 63(3): 101.     CrossRef
  • Production of an enzymatically active and immunogenic form of ectodomain of Porcine rubulavirus hemagglutinin-neuraminidase in the yeast Pichia pastoris
    José Luis Cerriteño-Sánchez, Gerardo Santos-López, Nora Hilda Rosas-Murrieta, Julio Reyes-Leyva, Sandra Cuevas-Romero, Irma Herrera-Camacho
    Journal of Biotechnology.2016; 223: 52.     CrossRef
Travel-Associated Chikungunya Cases in South Korea during 2009–2010
Go Woon Cha, Jung Eun Cho, Eun Ju Lee, Young Ran Ju, Myung Guk Han, Chan Park, Young Eui Jeong
Osong Public Health Res Perspect. 2013;4(3):170-175.   Published online June 30, 2013
DOI: https://doi.org/10.1016/j.phrp.2013.04.008
  • 1,978 View
  • 12 Download
  • 10 Citations
AbstractAbstract PDF
Objectives
Chikungunya (CHIK) has been classified as a communicable disease group IV in South Korea since late 2010. Based on this, we investigated the extent of imported cases of CHIK in dengue-suspected individuals returning from dengue-endemic regions.
Methods
A total of 486 dengue-suspected serum samples were screened for CHIK by enzyme-linked immunosorbent assay (ELISA) and reverse transcription-polymerase chain reaction (RT-PCR) analysis. Further RT-PCR-positive samples were used for the viral culture, and CHIK was subsequently confirmed by sequence analysis of the culture samples.
Results
Five out of 107 dengue-positive samples were found to be positive for CHIK and 15 out of 379 dengue-negative samples were found to be positive for CHIK by immunoglobulin M ELISA. Further, a CHIK virus was isolated from one of the two RT-PCR-positive sera by cell culture and confirmed by sequence analysis.
Conclusion
The present study documents the first evidence of travel-associated CHIK infection in South Korea. Considering the intense international traffic between countries, our finding emphasizes the urgent need for active patient and vector surveillance for timely response to reduce the introduction of CHIK in Korea.

Citations

Citations to this article as recorded by  
  • Global prevalence of dengue and chikungunya coinfection: A systematic review and meta-analysis of 43,341 participants
    Ahmad Adebayo Irekeola, E.A. R Engku Nur Syafirah, Md Asiful Islam, Rafidah Hanim Shueb
    Acta Tropica.2022; 231: 106408.     CrossRef
  • Current Status and a Perspective of Mosquito-Borne Diseases in the Republic of Korea
    Jae Hyoung Im, Tong-Soo Kim, Moon-Hyun Chung, Ji Hyeon Baek, Hea Yoon Kwon, Jin-Soo Lee
    Vector-Borne and Zoonotic Diseases.2021; 21(2): 69.     CrossRef
  • Implications of a travel connectivity-based approach for infectious disease transmission risks in Oceania
    Angela Cadavid Restrepo, Luis Furuya-Kanamori, Helen Mayfield, Eric Nilles, Colleen L Lau
    BMJ Open.2021; 11(8): e046206.     CrossRef
  • Development of a neutralization assay based on the pseudotyped chikungunya virus of a Korean isolate
    Woo-Chang Chung, Kwang Yeon Hwang, Suk-Jo Kang, Jae-Ouk Kim, Moon Jung Song
    Journal of Microbiology.2020; 58(1): 46.     CrossRef
  • Chikungunya virus infection in Indonesia: a systematic review and evolutionary analysis
    Harapan Harapan, Alice Michie, Mudatsir Mudatsir, Roy Nusa, Benediktus Yohan, Abram Luther Wagner, R. Tedjo Sasmono, Allison Imrie
    BMC Infectious Diseases.2019;[Epub]     CrossRef
  • Global prevalence and distribution of coinfection of malaria, dengue and chikungunya: a systematic review
    Nasir Salam, Shoeb Mustafa, Abdul Hafiz, Anis Ahmad Chaudhary, Farah Deeba, Shama Parveen
    BMC Public Health.2018;[Epub]     CrossRef
  • Chikungunya Virus Infection after Traveling to Surinam, South America
    Hoe-Soo Jang, Jong-Hun Chung, Joa Kim, Sun Ae Han, Na-Ra Yun, Dong-Min Kim
    The Korean Journal of Medicine.2016; 90(3): 262.     CrossRef
  • Molecular epidemiology, evolution and phylogeny of Chikungunya virus: An updating review
    Alessandra Lo Presti, Eleonora Cella, Silvia Angeletti, Massimo Ciccozzi
    Infection, Genetics and Evolution.2016; 41: 270.     CrossRef
  • The First Imported Case Infected with Chikungunya Virus in Korea
    Jeong-Hwan Hwang, Chang-Seop Lee
    Infection & Chemotherapy.2015; 47(1): 55.     CrossRef
  • Zika virus in Brazil and the danger of infestation by Aedes (Stegomyia) mosquitoes
    Carlos Brisola Marcondes, Maria de Fátima Freire de Melo Ximenes
    Revista da Sociedade Brasileira de Medicina Tropic.2015; 49(1): 4.     CrossRef
Prevalence of Tick-Borne Encephalitis Virus in Ixodid Ticks Collected from the Republic of Korea During 2011–2012
Seok-Min Yun, Bong Gu Song, WooYoung Choi, Won Il Park, Sung Yun Kim, Jong Yul Roh, Jungsang Ryou, Young Ran Ju, Chan Park, E-Hyun Shin
Osong Public Health Res Perspect. 2012;3(4):213-221.   Published online December 31, 2012
DOI: https://doi.org/10.1016/j.phrp.2012.10.004
  • 2,150 View
  • 24 Download
  • 26 Citations
AbstractAbstract PDF
Objectives
In this study, we demonstrated that TBEV-infected ticks have been distributed in the ROK, combined with our previous results. These results suggest that TBEV may exist in the ROK, and H. longicornis, H. flava, and I. nipponensis may be potential vectors of TBEV. In addition, these results emphasize the need for further epidemiological research of TBEV.
Methods
We examined for the presence of RNA of TBEV by reverse transcriptase-nested polymerase chain reaction (RT-nested PCR) using ixodid ticks captured in 25 localities of 10 provinces. Ticks were collected by the flagging and dragging method or using sentinel BG traps at forests, grass thickets, and grassland. A total of 13,053 ticks belonging to two genera and four species were collected and pooled (1292 pools), according to collection site, species of tick, and developmental stage.
Results
Among 1292 pools, the envelope (E) protein gene of TBEV was detected using RT-nested PCR in 10 pools (3 pools of the 1,331 adult ticks and 7 pools of the 11,169 nymph ticks) collected from Gangwon-do province, Jeonrabuk-do province, and Jeju Island. The minimum infection rates for TBEV of Haemaphysalis longicornis, Haemaphysalis flava, and Ixodes nipponensis were 0.06%, 0.17%, and 2.38%, respectively. Phylogenetic analysis based on the partial E protein gene was performed to identify relationships between the TBEV strains. This showed that 10 Korean strains clustered with the Western subtype.
Conclusion
In this study, we investigated the prevalence of tick-borne encephalitis virus (TBEV) in ixodid ticks from various regions of the Republic of Korea (ROK) during 2011–2012 to identify whether TBEV is circulating and to determine the endemic regions of TBEV.

Citations

Citations to this article as recorded by  
  • Molecular detection and phylogenetic analysis of tick‐borne encephalitis virus in ticks in northeastern China
    Xiaohui Li, Hongwei Ji, Di Wang, Lihe Che, Li Zhang, Liang Li, Qing Yin, Quan Liu, Feng Wei, Zedong Wang
    Journal of Medical Virology.2022; 94(2): 507.     CrossRef
  • TBE in South Korea
    Song Joon Young
    Tick-borne encephalitis - The Book.2022;[Epub]     CrossRef
  • Genomic Determinants Potentially Associated with Clinical Manifestations of Human-Pathogenic Tick-Borne Flaviviruses
    Artem N. Bondaryuk, Nina V. Kulakova, Ulyana V. Potapova, Olga I. Belykh, Anzhelika V. Yudinceva, Yurij S. Bukin
    International Journal of Molecular Sciences.2022; 23(21): 13404.     CrossRef
  • TBE in South Korea
    Song Joon Young
    Tick-borne encephalitis - The Book.2021;[Epub]     CrossRef
  • Hard Ticks as Vectors Tested Negative for Severe Fever with Thrombocytopenia Syndrome in Ganghwa-do, Korea during 2019-2020
    Kyoung Jin, Yeon-Ja Koh, Seong Kyu Ahn, Joonghee Cho, Junghwan Lim, Jaeyong Song, Jinyoung Lee, Young Woo Gong, Mun Ju Kwon, Hyung Wook Kwon, Young Yil Bahk, Tong-Soo Kim
    The Korean Journal of Parasitology.2021; 59(3): 281.     CrossRef
  • Nationwide Temporal and Geographical Distribution of Tick Populations and Phylogenetic Analysis of Severe Fever with Thrombocytopenia Syndrome Virus in Ticks in Korea, 2020
    Min-Goo Seo, Byung-Eon Noh, Hak Seon Lee, Tae-Kyu Kim, Bong-Goo Song, Hee Il Lee
    Microorganisms.2021; 9(8): 1630.     CrossRef
  • Seroepidemiologic survey of emerging vector-borne infections in South Korean forest/field workers
    Ji Yun Noh, Joon Young Song, Joon Yong Bae, Man-Seong Park, Jin Gu Yoon, Hee Jin Cheong, Woo Joo Kim, Nam-Hyuk Cho
    PLOS Neglected Tropical Diseases.2021; 15(8): e0009687.     CrossRef
  • European subtype of tick-borne encephalitis virus. Literature review
    Yu. S. Savinova
    Acta Biomedica Scientifica.2021; 6(4): 100.     CrossRef
  • Tick-Borne Encephalitis Virus: An Emerging Ancient Zoonosis?
    Andrei A. Deviatkin, Ivan S. Kholodilov, Yulia A. Vakulenko, Galina G. Karganova, Alexander N. Lukashev
    Viruses.2020; 12(2): 247.     CrossRef
  • Characterization of tick-borne encephalitis virus isolated from a tick in central Hokkaido in 2017
    Yuji Takahashi, Shintaro Kobayashi, Mariko Ishizuka, Minato Hirano, Memi Muto, Shoko Nishiyama, Hiroaki Kariwa, Kentaro Yoshii
    Journal of General Virology.2020; 101(5): 497.     CrossRef
  • A history of the introduction, establishment, dispersal and management ofHaemaphysalis longicornisNeumann, 1901 (Ixodida: Ixodidae) in New Zealand
    Allen C. G. Heath
    New Zealand Journal of Zoology.2020; 47(4): 241.     CrossRef
  • Four Year Surveillance of the Vector Hard Ticks for SFTS, Ganghwa-do, Republic of Korea
    Myung-Deok Kim-Jeon, Seung Jegal, Hojong Jun, Haneul Jung, Seo Hye Park, Seong Kyu Ahn, Jinyoung Lee, Young Woo Gong, Kwangsig Joo, Mun Ju Kwon, Jong Yul Roh, Wook-Gyo Lee, Young Yil Bahk, Tong-Soo Kim
    The Korean Journal of Parasitology.2019; 57(6): 691.     CrossRef
  • TBE in South Korea
    Joon Young Song
    Tick-borne encephalitis - The Book.2019;[Epub]     CrossRef
  • Ixodid ticks and tick-borne encephalitis virus prevalence in the South Asian part of Russia (Republic of Tuva)
    Ivan Kholodilov, Oxana Belova, Ludmila Burenkova, Yuri Korotkov, Lidiya Romanova, Lola Morozova, Vitalii Kudriavtsev, Larissa Gmyl, Ilmira Belyaletdinova, Alexander Chumakov, Natalia Chumakova, Oyumaa Dargyn, Nina Galatsevich, Anatoly Gmyl, Mikhail Mikhai
    Ticks and Tick-borne Diseases.2019; 10(5): 959.     CrossRef
  • Current Status of Tick-Borne Diseases in South Korea
    Jae Hyoung Im, JiHyeon Baek, Areum Durey, Hea Yoon Kwon, Moon-Hyun Chung, Jin-Soo Lee
    Vector-Borne and Zoonotic Diseases.2019; 19(4): 225.     CrossRef
  • Molecular characterization of Haemaphysalis longicornis-borne rickettsiae, Republic of Korea and China
    Ju Jiang, Huijuan An, John S. Lee, Monica L. O’Guinn, Heung-Chul Kim, Sung-Tae Chong, Yanmin Zhang, Dan Song, Roxanne G. Burrus, Yuzhou Bao, Terry A. Klein, Allen L. Richards
    Ticks and Tick-borne Diseases.2018; 9(6): 1606.     CrossRef
  • Molecular detection of Rickettsia species in ticks collected from the southwestern provinces of the Republic of Korea
    Yoontae Noh, Yeong Seon Lee, Heung-Chul Kim, Sung-Tae Chong, Terry A. Klein, Ju Jiang, Allen L. Richards, Hae Kyeong Lee, Su Yeon Kim
    Parasites & Vectors.2017;[Epub]     CrossRef
  • Necessity of a Surveillance System for Tick-borne Encephalitis
    Seok-Ju Yoo, Ji-Hyuk Park
    Osong Public Health and Research Perspectives.2017; 8(2): 155.     CrossRef
  • Molecular detection of severe fever with thrombocytopenia syndrome and tick-borne encephalitis viruses in ixodid ticks collected from vegetation, Republic of Korea, 2014
    Seok-Min Yun, Ye-Ji Lee, WooYoung Choi, Heung-Chul Kim, Sung-Tae Chong, Kyu-Sik Chang, Jordan M. Coburn, Terry A. Klein, Won-Ja Lee
    Ticks and Tick-borne Diseases.2016; 7(5): 970.     CrossRef
  • The characterization of TBEV of European subtype circulating in Siberia, Russia
    I. V. Kozlova, T. V. Demina, S. E. Tkachev, Yu. S. Savinova, E. K. Doroshchenko, O. V. Lisak, Yu. P. Dzhioev, O. V. Suntsova, M. M. Verkhozina, A. I. Paramonov, N. V. Tikunova, V. I. Zlobin, D. . Ruzek
    Epidemiology and Vaccine Prevention.2016; 15(6): 30.     CrossRef
  • Detection of SFTS Virus inIxodes nipponensisandAmblyomma testudinarium(Ixodida: Ixodidae) Collected From Reptiles in the Republic of Korea
    Jae-Hwa Suh, Heung-Chul Kim, Seok-Min Yun, Jae-Won Lim, Jin-Han Kim, Sung-Tae Chong, Dae-Ho Kim, Hyun-Tae Kim, Hyun Kim, Terry A. Klein, Jaree L. Johnson, Won-Ja Lee
    Journal of Medical Entomology.2016; 53(3): 584.     CrossRef
  • Epidemiological Features and Clinical Manifestations of Lyme Borreliosis in Korea during the Period 2005^|^ndash;2012
    Shinje Moon, Yeongseon Hong, Kyu-Jam Hwang, Suyeon Kim, Jihye Eom, Donghyok Kwon, Ji-Hyuk Park, Seung-Ki Youn, Aeree Sohn
    Japanese Journal of Infectious Diseases.2015; 68(1): 1.     CrossRef
  • Characteristics and Factors Associated with Death among Patients Hospitalized for Severe Fever with Thrombocytopenia Syndrome, South Korea, 2013
    Jaeseung Shin, Donghyok Kwon, Seung-Ki Youn, Ji-Hyuk Park
    Emerging Infectious Diseases.2015; 21(10): 1704.     CrossRef
  • Review: Sentinels of tick-borne encephalitis risk
    Maren Imhoff, Peter Hagedorn, Yesica Schulze, Wiebke Hellenbrand, Martin Pfeffer, Matthias Niedrig
    Ticks and Tick-borne Diseases.2015; 6(5): 592.     CrossRef
  • Louping ill virus (LIV) in the Far East
    Galina N. Leonova, Ilya G. Kondratov, Olga S. Maystrovskaya, Ikuo Takashima, Sergei I. Belikov
    Archives of Virology.2015; 160(3): 663.     CrossRef
  • Prevalence of severe fever with thrombocytopenia syndrome virus in Haemaphysalis longicornis ticks in South Korea
    Sun-Whan Park, Bong Gu Song, E-Hyun Shin, Seok-Min Yun, Myung-Guk Han, Mi Yeoun Park, Chan Park, Jungsang Ryou
    Ticks and Tick-borne Diseases.2014; 5(6): 975.     CrossRef

PHRP : Osong Public Health and Research Perspectives