Skip Navigation
Skip to contents

PHRP : Osong Public Health and Research Perspectives

OPEN ACCESS
SEARCH
Search

Search

Page Path
HOME > Search
5 "biobank"
Filter
Filter
Article category
Keywords
Publication year
Authors
Original Articles
Instability of Plasma and Serum Progastrin-Releasing Peptide During Repeated Freezing and Thawing
Jae-Eun Lee, Jin-Hyun Lee, Maria Hong, Seul-Ki Park, Ji-In Yu, So-Youn Shin, Shine Young Kim
Osong Public Health Res Perspect. 2016;7(6):351-355.   Published online December 31, 2016
DOI: https://doi.org/10.1016/j.phrp.2016.11.004
  • 1,632 View
  • 19 Download
  • 2 Citations
AbstractAbstract PDF
Objectives
Progastrin-releasing peptide (proGRP) is a promising biomarker for small cell lung cancer. However, not much is known about how sample processing and storage conditions affect the stability of proGRP. Here, we examined the effects of repeated freeze–thaw cycles on the stability of proGRP in plasma and serum.
Methods
Concentrations of proGRP were measured in plasma and serum samples exposed to two, three, or four freeze–thaw cycles and these were compared with values of corresponding samples exposed to one cycle (baseline). We also performed the area under the receiver-operating-characteristic curve (AUC) analysis to determine whether the differences of proGRP concentrations between each paired plasma and serum sample (ΔproGRP) can be used for identifying the samples that have been exposed to multiple freeze–thaw cycles.
Results
Concentrations of proGRP gradually decreased in both plasma and serum samples with increasing numbers of freeze–thaw cycles. Reduction rates of proGRP concentrations were greater in serum than in plasma samples and serum proGRP levels declined with statistical significance (p < 0.001) up to 10.1% after four freeze–thaw cycles. The ΔproGRP measurement showed fair accuracy (AUC = 0.741) for identifying samples that had been through four freeze–thaw cycles. The sensitivity was 82.8% and specificity was 62.1% at an optimal cut-off point of > 4.9.
Conclusion
Our study shows that the stability of circulating proGRP is affected in both plasma and serum samples by repeated freezing and thawing. We also show that ΔproGRP could be used for identifying paired plasma and serum samples subjected to multiple freeze–thaw cycles.
Rapid DNA Extraction from Dried Blood Spots on Filter Paper: Potential Applications in Biobanking
Eun-Hye Choi, Sang Kwang Lee, Chunhwa Ihm, Young-Hak Sohn
Osong Public Health Res Perspect. 2014;5(6):351-357.   Published online December 31, 2014
DOI: https://doi.org/10.1016/j.phrp.2014.09.005
  • 1,360 View
  • 21 Download
  • 30 Citations
AbstractAbstract PDF
Objectives
Dried blood spot (DBS) technology is a microsampling alternative to traditional plasma or serum sampling for pharmaco- or toxicokinetic evaluation. DBS technology has been applied to diagnostic screening in drug discovery, nonclinical, and clinical settings. We have developed an improved elution protocol involving boiling of blood spots dried on Whatman filter paper.
Methods
The purpose of this study was to compare the quality, purity, and quantity of DNA isolated from frozen blood samples and DBSs. We optimized a method for extraction and estimation of DNA from blood spots dried on filter paper (3-mm FTA card). A single DBS containing 40 μL blood was used.
Results
DNA was efficiently extracted in phosphate-buffered saline (PBS) or Tris-EDTA (TE) buffer by incubation at 37°C overnight. DNA was stable in DBSs that were stored at room temperature or frozen. The housekeeping genes GAPDH and beta-actin were used as positive standards for polymerase chain reaction (PCR) validation of general diagnostic screening.
Conclusion
Our simple and convenient DBS storage and extraction methods are suitable for diagnostic screening by using very small volumes of blood collected on filter paper, and can be used in biobanks for blood sample storage.
Brief Report
A Strategic Plan for the Second Phase (2013–2015) of the Korea Biobank Project
Ok Park, Sang Yun Cho, So Youn Shin, Jae-Sun Park, Jun Woo Kim, Bok-Ghee Han
Osong Public Health Res Perspect. 2013;4(2):107-116.   Published online April 30, 2013
DOI: https://doi.org/10.1016/j.phrp.2013.03.006
  • 1,402 View
  • 19 Download
  • 9 Citations
AbstractAbstract PDF
The Korea Biobank Project (KBP) was led by the Ministry of Health and Welfare to establish a network between the National Biobank of Korea and biobanks run by university-affiliated general hospitals (regional biobanks). The Ministry of Health and Welfare started the project to enhance medical and health technology by collecting, managing, and providing researchers with high-quality human bioresources. The National Biobank of Korea, under the leadership of the Ministry of Health and Welfare, collects specimens through various cohorts and regional biobanks within university hospitals gather specimens from patients. The project began in 2008, and the first phase ended in 2012, which meant that there needed to be a plan for the second phase that begins in 2013. Consequently, professionals from within and outside the project were gathered to develop a plan for the second phase. Under the leadership of the planning committee, six working groups were formed to formulate a practical plan. By conducting two workshops with experts in the six working groups and the planning committee and three forums in 2011 and 2012, they have developed a strategic plan for the second phase of the KBP. This document presents a brief report of the second phase of the project based on a discussion with them.During the first phase of the project (2008–2012), a network was set up between the National Biobank of Korea and 17 biobanks at university-affiliated hospitals in an effort to unify informatics and governance among the participating biobanks. The biobanks within the network manage data on their biospecimens with a unified Biobank Information Management System. Continuous efforts are being made to develop a common standard operating procedure for resource collection, management, distribution, and personal information security, and currently, management of these data is carried out in a somewhat unified manner. In addition, the KBP has trained and educated professionals to work within the biobanks, and has also carried out various publicity promotions to the public and researchers. During the first phase, biospecimens from more than 300,000 participants through various cohorts and biospecimens from more than 200,000 patients from hospitals were collected, which were distributed to approximately 600 research projects.The planning committee for the second phase evaluated that the first phase of the KBP was successful. However, the first phase of the project was meant to allow autonomy to the individual biobanks. The biobanks were able to choose the kind of specimens they were going to collect and the amount of specimen they would set as a goal, as well as being allowed to choose their own methods to manage their biobanks (autonomy). Therefore, some biobanks collected resources that were easy to collect and the resources needed by researchers were not strategically collected. In addition, there was also a low distribution rate to researchers outside of hospitals, who do not have as much access to specimens and cases as those in hospitals. There were also many cases in which researchers were not aware of the KBP, and the distribution processes were not set up to be convenient to the demands of researchers.Accordingly, the second phase of the KBP will be focused on increasing the integration and cooperation between the biobanks within the network. The KBP plans to set goals for the strategic collection of the needed human bioresources. Although the main principle of the first phase was to establish infrastructure and resource collection, the key objective of the second phase is the efficient utilization of gathered resources. In order to fully utilize the gathered resources in an efficient way, distribution systems and policies must be improved. Vitalization of distribution, securing of high-value resource and related clinical and laboratory information, international standardization of resource management systems, and establishment of a virtuous cycle between research and development (R&D) and biobanks are the four main strategies. Based on these strategies, 12 related objectives have been set and are planned to be executed.
Articleses
National Biobank of Korea: Quality control Programs of Collected-human Biospecimens
Jae-Eun Lee, Ji-Hyun Kim, Eun-Jung Hong, Hye Sook Yoo, Hye-Young Nam, Ok Park
Osong Public Health Res Perspect. 2012;3(3):185-189.   Published online June 30, 2012
DOI: https://doi.org/10.1016/j.phrp.2012.07.007
  • 1,438 View
  • 15 Download
  • 16 Citations
AbstractAbstract PDF
Personalized medicine is emerging as a main paradigm for risk prediction, pre-diagnosis, and effective prevention and treatment of disease. A large number of human biospecimens and their clinical data are essential resources for the success of personalized medicine as well as other biomedical research. The National Biobank of Korea (NBK) has collected well-annotated and high quality human biospecimens, and distributes them to the Korean biomedical scientists, through the Korea Biobank Project (KBP). The ultimate goal of NBK activities is to promote biomedical research and public health. As of December- 2011, the NBK has collected various human biospecimens from 525,416 participants including 325,952 Korean populations and 199,464 patients. The purpose of this paper is to introduce the KBP and quality control programs for collection of human biospecimens with high quality of NBK.
Opening of the National Biobank of Korea as the Infrastructure of Future Biomedical Science in Korea
Sang Yun Cho, Eun Jung Hong, Jung Min Nam, Bogkee Han, Chaeshin Chu, Ok Park
Osong Public Health Res Perspect. 2012;3(3):177-184.   Published online June 30, 2012
DOI: https://doi.org/10.1016/j.phrp.2012.07.004
  • 1,492 View
  • 22 Download
  • 24 Citations
AbstractAbstract PDF
On April 26, 2012, the Korea National Institute of Health officially held the opening ceremony of newly dedicated biobank building, ‘NationalBiobank of Korea’. The stocked biospecimens and related information have been distributed for medical and public health researches. The Korea Biobank Project, which was initiated in 2008, constructed the Korea Biobank Network consisting of the National Biobank of Korea (NBK) with 17 regional biobanks in Korea. As of December 2011, a total of 525,416 biospecimens with related information have been secured: 325,952 biospecimens from the general population obtained through cohort studies and 199,464 biospecimens of patients from regional biobanks. A large scale genomic study, Korea Association Resource (KARE) and many researches utilized the biospecimens secured through Korea Genome Epidemiology Study (KoGES) and Korea Biobank Project (KBP). Construction of ‘National Biobank of Korea’, a dedicated biobank building at Osong means that NBK can manage and check quality of the biospecimens with promising distribution of 26 million vials of biospecimen, which provide the infrastructure for the development of health technology in Korea. The NBK and the National Library of Medicine (to be constructed in 2014) will play a central role in future biomedical research in Korea.

PHRP : Osong Public Health and Research Perspectives