1Department of Big Data, Chungbuk National University, Cheongju, Republic of Korea
2Biomedical Research Institute, Chungbuk National University Hospital, Cheongju, Republic of Korea
3Department of Biomedical Engineering, College of Medicine, Chungbuk National University, Cheongju, Republic of Korea
4Medical Research Institute, School of Medicine, Chungbuk National University, Cheongju, Republic of Korea
© 2025 Korea Disease Control and Prevention Agency.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Ethics Approval
Not applicable.
Conflicts of Interest
The authors have no conflicts of interest to declare.
Funding
This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (No. 2020R1I1A1A01065199 and RS-2023-00245300).
Availability of Data
The datasets are not publicly available but are available from the corresponding author upon reasonable request.
Authors’ Contributions
Conceptualization: all authors; Data curation: all authors; Formal analysis: VK; Funding acquisition: KAK, HSS; Investigation: KAK, HSS; Methodology: VK, HSS; Project administration: KAK, HSS; Resources: KAK, HSS; Software: VK; Supervision: KAK, HSS; Validation: KAK, HSS; Visualization: VK, HSS; Writing–original draft: VK, HSS; Writing–review & editing: all authors. All authors read and approved the final manuscript.
| Characteristic | Post-discharge MACE | |||||
|---|---|---|---|---|---|---|
| Total | No MACE | CABG | CD | MI | Re-PCI | |
| Total | 15,104 (100.0) | 14,317 (94.8) | 44 (0.3) | 263 (1.7) | 171 (1.1) | 546 (3.6) |
| Age (y) | 65.91±12.71 | 65.77±12.68 | 66.93±10.03 | 75.72±10.20 | 68.83±13.93 | 65.75±11.95 |
| BMI (kg/m2) | 24.03±3.22 | 24.04±3.21 | 23.90±2.74 | 22.79±3.35 | 23.40±3.39 | 24.26±3.13 |
| Systolic blood pressure (mmHg) | 130.09±27.39 | 130.07±27.29 | 125.39±25.72 | 123.35±30.80 | 129.87±28.64 | 132.04±27.08 |
| Diastolic blood pressure (mmHg) | 79.16±16.11 | 79.16±16.04 | 77.64±15.21 | 75.26±18.35 | 78.72±15.67 | 80.41±16.30 |
| PCI stent size (mm) | 23.50±7.73 | 23.47±7.76 | 22.88±10.86 | 24.51±6.48 | 23.39±7.59 | 24.82±7.20 |
| PCI stent diameter (mm) | 3.17±0.47 | 3.17±0.46 | 3.27±0.54 | 3.12±0.58 | 3.13±0.41 | 3.11±0.45 |
| CK (U/L) | 1,133.97±1,777.96 | 1,142.49±1,784.77 | 819.12±877.10 | 1,167.22±2,130.81 | 718.67±1,223.75 | 1,196.75±1,876.80 |
| CK-MB (U/L) | 112.83±217.43 | 111.26±210.17 | 109.02±148.23 | 107.91±212.51 | 91.63±144.59 | 111.14±213.07 |
| LVEF | 53.41±21.94 | 53.53±22.27 | 44.10±11.94 | 43.48±13.46 | 49.77±13.38 | 53.72±11.65 |
| CAG pre-TIMI | 1.17±1.27 | 1.17±1.27 | 1.03±1.28 | 1.22±1.27 | 1.07±1.18 | 1.17±1.24 |
| CAG post-TIMI | 2.89±0.45 | 2.90±0.44 | 2.43±1.08 | 2.74±0.72 | 2.78±0.67 | 2.92±0.36 |
| HDL cholesterol (mg/dL) | 43.65±16.27 | 43.71±16.18 | 41.27±8.94 | 42.96±16.67 | 44.20±29.78 | 42.88±13.90 |
| LDL cholesterol (mg/dL) | 115.41±40.39 | 115.54±40.56 | 113.47±40.06 | 103.11±39.89 | 113.57±37.40 | 114.06±38.57 |
| Sex | ||||||
| Female | 10,897 (72.1) | 10,355 (72.3) | 33 (75.0) | 160 (60.8) | 113 (66.1) | 395 (72.3) |
| Male | 4,157 (27.5) | 3,915 (27.3) | 11 (25.0) | 103 (39.2) | 58 (33.9) | 150 (27.5) |
| Chest pain | ||||||
| No | 11,413 (75.6) | 3,303 (23.1) | 9 (20.5) | 113 (43.0) | 47 (27.5) | 160 (29.3) |
| Yes | 3,435 (22.7) | 10,787 (75.3) | 35 (79.5) | 135 (51.3) | 119 (69.6) | 382 (70.0) |
| Killip class | ||||||
| I | 10,274 (68.0) | 9,814 (68.5) | 32 (72.7) | 94 (35.7) | 95 (55.6) | 373 (68.3) |
| II | 1,810 (12.0) | 1,691 (11.8) | 4 (9.1) | 32 (12.2) | 29 (17.0) | 67 (12.3) |
| III | 1,073 (7.1) | 989 (6.9) | 2 (4.5) | 82 (31.2) | 25 (14.6) | 47 (8.6) |
| IV | 559 (3.7) | 519 (3.6) | 4 (9.1) | 24 (9.1) | 10 (5.8) | 21 (3.8) |
| CAG target vessel | ||||||
| LAD | 6,398 (42.4) | 6,038 (42.2) | 10 (22.7) | 90 (34.2) | 79 (46.2) | 244 (44.7) |
| LCX | 2,352 (15.6) | 2,248 (15.7) | 11 (25.0) | 29 (11.0) | 18 (10.5) | 100 (18.3) |
| Left main | 262 (1.7) | 241 (1.7) | 5 (11.4) | 15 (5.7) | 4 (2.3) | 6 (1.1) |
| RCA | 4,448 (29.4) | 4,256 (29.7) | 12 (27.3) | 63 (24.0) | 36 (21.1) | 174 (31.9) |
Data are presented as n (%) or mean±standard deviation.
KAMIR, Korea Acute Myocardial Infarction Registry; MACE, major adverse cardiovascular event; CABG, coronary artery bypass grafting; CD, cardiac death; MI, myocardial infarction; Re-PCI, repeat percutaneous coronary intervention; BMI, body mass index; PCI, percutaneous coronary intervention; CK, creatine kinase; CK-MB, creatine kinase MB; LVEF, left ventricular ejection fraction; CAG, coronary angiography; TIMI, thrombolysis in myocardial infarction; HDL, high-density lipoprotein; LDL, low-density lipoprotein; LAD, left anterior descending artery; LCX, left circumflex artery; RCA, right coronary artery.
| Period | Patient sample (n) | ||||
|---|---|---|---|---|---|
| Total | CABG | CD | MI | Re-PCI | |
| 1 mo | 370 | 22 | 150 | 97 | 101 |
| 6 mo | 468 | 15 | 143 | 46 | 264 |
| 12 mo | 398 | 7 | 137 | 36 | 218 |
| Total | 1,236 | 44 | 430 | 179 | 583 |
MACE, major adverse cardiovascular event; CABG, coronary artery bypass grafting; CD, cardiac death; MI, myocardial infarction; Re-PCI, repeat percutaneous coronary intervention.
| ML algorithm | Best hyperparameters |
|---|---|
| Decision tree | max_depth=5; min_samples_leaf=10; criterion='gini' |
| Random forest | n_estimators=100; max_depth=4; max_features='sqrt' |
| Support vector machines | C=10; kernel='rbf'; gamma='scale'; degree=3 |
| K-nearest neighbor | n_neighbors=5; weights='uniform'; algorithm='auto' |
| Logistic regression | C=0.1; penalty='l2'; solver='liblinear' |
| XGBoost | n_estimators=50; learning_rate=0.1; max_depth=3; gamma=0 |
ML, machine learning; XGBoost, extreme gradient boosting.
| ML model | SMOTE | ACC | RE | PR | F1 | AUC |
|---|---|---|---|---|---|---|
| SVM | No | 0.8254 | 0.8125 | 0.8395 | 0.8258 | 0.8712 |
| Yes | 0.8423 | 0.8615 | 0.8246 | 0.8425 | 0.8854 | |
| DT | No | 0.7915 | 0.8054 | 0.7789 | 0.792 | 0.8461 |
| Yes | 0.8136 | 0.8425 | 0.7856 | 0.8132 | 0.8654 | |
| RF | No | 0.8365 | 0.8215 | 0.8521 | 0.8366 | 0.8823 |
| Yes | 0.8554 | 0.8754 | 0.8356 | 0.8553 | 0.9015 | |
| LR | No | 0.8023 | 0.7954 | 0.8095 | 0.8024 | 0.8495 |
| Yes | 0.8256 | 0.8456 | 0.8054 | 0.8254 | 0.8685 | |
| KNN | No | 0.8512 | 0.8354 | 0.8675 | 0.8514 | 0.9005 |
| Yes | 0.8725 | 0.8954 | 0.8502 | 0.8723 | 0.9154 | |
| XGB | No | 0.7542 | 0.7754 | 0.7335 | 0.754 | 0.8154 |
| Yes | 0.7756 | 0.8054 | 0.7456 | 0.7754 | 0.8325 |
ML, machine learning; SMOTE, synthetic minority over-sampling technique; ACC, accuracy; RE, recall; PR, precision; F1, F1-score; AUC, area under the receiver operating characteristic curve; SVM, support vector machine; DT, decision tree; RF, random forest; LR, logistic regression; KNN, k-nearest neighbors; XGB, extreme gradient boosting.
| ML model | SMOTE | ACC | RE | PR | F1 | AUC |
|---|---|---|---|---|---|---|
| SVM | No | 0.8235 | 0.8156 | 0.8421 | 0.8287 | 0.8876 |
| Yes | 0.8362 | 0.8475 | 0.8254 | 0.8363 | 0.8954 | |
| DT | No | 0.7952 | 0.7821 | 0.8095 | 0.7957 | 0.8523 |
| Yes | 0.8105 | 0.8234 | 0.7978 | 0.8105 | 0.8679 | |
| RF | No | 0.8176 | 0.8054 | 0.8302 | 0.8177 | 0.8754 |
| Yes | 0.8254 | 0.8395 | 0.8112 | 0.8252 | 0.8836 | |
| LR | No | 0.8025 | 0.7954 | 0.8102 | 0.8028 | 0.8615 |
| Yes | 0.8195 | 0.8321 | 0.8065 | 0.8193 | 0.8782 | |
| KNN | No | 0.8315 | 0.8254 | 0.8376 | 0.8314 | 0.8905 |
| Yes | 0.8392 | 0.8435 | 0.8354 | 0.8394 | 0.8985 | |
| XGB | No | 0.7854 | 0.7725 | 0.7985 | 0.7855 | 0.8425 |
| Yes | 0.7954 | 0.8095 | 0.7815 | 0.7954 | 0.8536 |
ML, machine learning; SMOTE, synthetic minority over-sampling technique; ACC, accuracy; RE, recall; PR, precision; F1, F1-score; AUC, area under the receiver operating characteristic curve; SVM, support vector machine; DT, decision tree; RF, random forest; LR, logistic regression; KNN, k-nearest neighbors; XGB, extreme gradient boosting.
| ML model | SMOTE | ACC | RE | PR | F1 | AUC |
|---|---|---|---|---|---|---|
| SVM | No | 0.8254 | 0.8012 | 0.8423 | 0.8215 | 0.8652 |
| Yes | 0.8417 | 0.8495 | 0.8352 | 0.8423 | 0.8789 | |
| DT | No | 0.7925 | 0.7568 | 0.8211 | 0.788 | 0.8365 |
| Yes | 0.8103 | 0.8054 | 0.8154 | 0.8104 | 0.8492 | |
| RF | No | 0.8075 | 0.7895 | 0.8256 | 0.8073 | 0.8521 |
| Yes | 0.8231 | 0.8412 | 0.8054 | 0.823 | 0.8654 | |
| LR | No | 0.7854 | 0.7625 | 0.8095 | 0.7858 | 0.8312 |
| Yes | 0.8015 | 0.7954 | 0.8076 | 0.8015 | 0.8456 | |
| KNN | No | 0.8156 | 0.8025 | 0.8289 | 0.8157 | 0.8585 |
| Yes | 0.8324 | 0.8456 | 0.8195 | 0.8325 | 0.8712 | |
| XGB | No | 0.7542 | 0.7254 | 0.7854 | 0.7549 | 0.8054 |
| Yes | 0.7715 | 0.7654 | 0.7776 | 0.7715 | 0.8185 |
ML, machine learning; SMOTE, synthetic minority over-sampling technique; ACC, accuracy; RE, recall; PR, precision; F1, F1-score; AUC, area under the receiver operating characteristic curve; SVM, support vector machine; DT, decision tree; RF, random forest; LR, logistic regression; KNN, k-nearest neighbors; XGB, extreme gradient boosting.
| Hyperparameter | SMOTE | ACC | RE | PR | F1 | AUC |
|---|---|---|---|---|---|---|
| Epoch=50, batch_size=64, learning_rate=1e-5 | No | 0.9054 | 0.9154 | 0.8956 | 0.9055 | 0.9425 |
| Yes | 0.9185 | 0.9354 | 0.9025 | 0.9184 | 0.9554 | |
| Epoch=50, batch_size=64, learning_rate=1e-4 | No | 0.9085 | 0.9254 | 0.8925 | 0.9084 | 0.9465 |
| Yes | 0.9215 | 0.9454 | 0.8975 | 0.9214 | 0.9584 | |
| Epoch=50, batch_size=64, learning_rate=1e-3 | No | 0.8955 | 0.8854 | 0.9055 | 0.8955 | 0.9385 |
| Yes | 0.9125 | 0.9354 | 0.8902 | 0.9124 | 0.9515 |
DNN, deep neural network; SMOTE, synthetic minority over-sampling technique; ACC, accuracy; RE, recall; PR, precision; F1, F1-score; AUC, area under the receiver operating characteristic curve.
| Hyperparameter | SMOTE | ACC | RE | PR | F1 | AUC |
|---|---|---|---|---|---|---|
| Epoch=50, batch_size=64, learning_rate=1e-5 | No | 0.8675 | 0.8595 | 0.8754 | 0.8674 | 0.9254 |
| Yes | 0.8795 | 0.8854 | 0.8735 | 0.8795 | 0.9385 | |
| Epoch=50, batch_size=64, learning_rate=1e-4 | No | 0.8725 | 0.8678 | 0.8782 | 0.8727 | 0.9285 |
| Yes | 0.8842 | 0.8915 | 0.8765 | 0.884 | 0.9421 | |
| Epoch=50, batch_size=64, learning_rate=1e-3 | No | 0.8654 | 0.8585 | 0.8732 | 0.8656 | 0.9234 |
| Yes | 0.8812 | 0.8874 | 0.8751 | 0.8813 | 0.9392 |
DNN, deep neural network; SMOTE, synthetic minority over-sampling technique; ACC, accuracy; RE, recall; PR, precision; F1, F1-score; AUC, area under the receiver operating characteristic curve.
| Hyperparameters | SMOTE | ACC | RE | PR | F1 | AUC |
|---|---|---|---|---|---|---|
| Epoch=50, batch_size=64, learning_rate=1e-5 | No | 0.8954 | 0.8854 | 0.9056 | 0.8955 | 0.9354 |
| Yes | 0.9125 | 0.9254 | 0.8995 | 0.9124 | 0.9485 | |
| Epoch=50, batch_size=64, learning_rate=1e-4 | No | 0.8954 | 0.8754 | 0.9156 | 0.8953 | 0.9325 |
| Yes | 0.9035 | 0.9154 | 0.8915 | 0.9032 | 0.9415 | |
| Epoch=50, batch_size=64, learning_rate=1e-3 | No | 0.8875 | 0.8654 | 0.9085 | 0.8865 | 0.9254 |
| Yes | 0.8962 | 0.9054 | 0.8875 | 0.8963 | 0.9345 |
DNN, deep neural network; SMOTE, synthetic minority over-sampling technique; ACC, accuracy; RE, recall; PR, precision; F1, F1-score; AUC, area under the receiver operating characteristic curve.
| Characteristic | Post-discharge MACE | |||||
|---|---|---|---|---|---|---|
| Total | No MACE | CABG | CD | MI | Re-PCI | |
| Total | 15,104 (100.0) | 14,317 (94.8) | 44 (0.3) | 263 (1.7) | 171 (1.1) | 546 (3.6) |
| Age (y) | 65.91±12.71 | 65.77±12.68 | 66.93±10.03 | 75.72±10.20 | 68.83±13.93 | 65.75±11.95 |
| BMI (kg/m2) | 24.03±3.22 | 24.04±3.21 | 23.90±2.74 | 22.79±3.35 | 23.40±3.39 | 24.26±3.13 |
| Systolic blood pressure (mmHg) | 130.09±27.39 | 130.07±27.29 | 125.39±25.72 | 123.35±30.80 | 129.87±28.64 | 132.04±27.08 |
| Diastolic blood pressure (mmHg) | 79.16±16.11 | 79.16±16.04 | 77.64±15.21 | 75.26±18.35 | 78.72±15.67 | 80.41±16.30 |
| PCI stent size (mm) | 23.50±7.73 | 23.47±7.76 | 22.88±10.86 | 24.51±6.48 | 23.39±7.59 | 24.82±7.20 |
| PCI stent diameter (mm) | 3.17±0.47 | 3.17±0.46 | 3.27±0.54 | 3.12±0.58 | 3.13±0.41 | 3.11±0.45 |
| CK (U/L) | 1,133.97±1,777.96 | 1,142.49±1,784.77 | 819.12±877.10 | 1,167.22±2,130.81 | 718.67±1,223.75 | 1,196.75±1,876.80 |
| CK-MB (U/L) | 112.83±217.43 | 111.26±210.17 | 109.02±148.23 | 107.91±212.51 | 91.63±144.59 | 111.14±213.07 |
| LVEF | 53.41±21.94 | 53.53±22.27 | 44.10±11.94 | 43.48±13.46 | 49.77±13.38 | 53.72±11.65 |
| CAG pre-TIMI | 1.17±1.27 | 1.17±1.27 | 1.03±1.28 | 1.22±1.27 | 1.07±1.18 | 1.17±1.24 |
| CAG post-TIMI | 2.89±0.45 | 2.90±0.44 | 2.43±1.08 | 2.74±0.72 | 2.78±0.67 | 2.92±0.36 |
| HDL cholesterol (mg/dL) | 43.65±16.27 | 43.71±16.18 | 41.27±8.94 | 42.96±16.67 | 44.20±29.78 | 42.88±13.90 |
| LDL cholesterol (mg/dL) | 115.41±40.39 | 115.54±40.56 | 113.47±40.06 | 103.11±39.89 | 113.57±37.40 | 114.06±38.57 |
| Sex | ||||||
| Female | 10,897 (72.1) | 10,355 (72.3) | 33 (75.0) | 160 (60.8) | 113 (66.1) | 395 (72.3) |
| Male | 4,157 (27.5) | 3,915 (27.3) | 11 (25.0) | 103 (39.2) | 58 (33.9) | 150 (27.5) |
| Chest pain | ||||||
| No | 11,413 (75.6) | 3,303 (23.1) | 9 (20.5) | 113 (43.0) | 47 (27.5) | 160 (29.3) |
| Yes | 3,435 (22.7) | 10,787 (75.3) | 35 (79.5) | 135 (51.3) | 119 (69.6) | 382 (70.0) |
| Killip class | ||||||
| I | 10,274 (68.0) | 9,814 (68.5) | 32 (72.7) | 94 (35.7) | 95 (55.6) | 373 (68.3) |
| II | 1,810 (12.0) | 1,691 (11.8) | 4 (9.1) | 32 (12.2) | 29 (17.0) | 67 (12.3) |
| III | 1,073 (7.1) | 989 (6.9) | 2 (4.5) | 82 (31.2) | 25 (14.6) | 47 (8.6) |
| IV | 559 (3.7) | 519 (3.6) | 4 (9.1) | 24 (9.1) | 10 (5.8) | 21 (3.8) |
| CAG target vessel | ||||||
| LAD | 6,398 (42.4) | 6,038 (42.2) | 10 (22.7) | 90 (34.2) | 79 (46.2) | 244 (44.7) |
| LCX | 2,352 (15.6) | 2,248 (15.7) | 11 (25.0) | 29 (11.0) | 18 (10.5) | 100 (18.3) |
| Left main | 262 (1.7) | 241 (1.7) | 5 (11.4) | 15 (5.7) | 4 (2.3) | 6 (1.1) |
| RCA | 4,448 (29.4) | 4,256 (29.7) | 12 (27.3) | 63 (24.0) | 36 (21.1) | 174 (31.9) |
| Period | Patient sample (n) | ||||
|---|---|---|---|---|---|
| Total | CABG | CD | MI | Re-PCI | |
| 1 mo | 370 | 22 | 150 | 97 | 101 |
| 6 mo | 468 | 15 | 143 | 46 | 264 |
| 12 mo | 398 | 7 | 137 | 36 | 218 |
| Total | 1,236 | 44 | 430 | 179 | 583 |
| ML algorithm | Best hyperparameters |
|---|---|
| Decision tree | max_depth=5; min_samples_leaf=10; criterion='gini' |
| Random forest | n_estimators=100; max_depth=4; max_features='sqrt' |
| Support vector machines | C=10; kernel='rbf'; gamma='scale'; degree=3 |
| K-nearest neighbor | n_neighbors=5; weights='uniform'; algorithm='auto' |
| Logistic regression | C=0.1; penalty='l2'; solver='liblinear' |
| XGBoost | n_estimators=50; learning_rate=0.1; max_depth=3; gamma=0 |
| ML model | SMOTE | ACC | RE | PR | F1 | AUC |
|---|---|---|---|---|---|---|
| SVM | No | 0.8254 | 0.8125 | 0.8395 | 0.8258 | 0.8712 |
| Yes | 0.8423 | 0.8615 | 0.8246 | 0.8425 | 0.8854 | |
| DT | No | 0.7915 | 0.8054 | 0.7789 | 0.792 | 0.8461 |
| Yes | 0.8136 | 0.8425 | 0.7856 | 0.8132 | 0.8654 | |
| RF | No | 0.8365 | 0.8215 | 0.8521 | 0.8366 | 0.8823 |
| Yes | 0.8554 | 0.8754 | 0.8356 | 0.8553 | 0.9015 | |
| LR | No | 0.8023 | 0.7954 | 0.8095 | 0.8024 | 0.8495 |
| Yes | 0.8256 | 0.8456 | 0.8054 | 0.8254 | 0.8685 | |
| KNN | No | 0.8512 | 0.8354 | 0.8675 | 0.8514 | 0.9005 |
| Yes | 0.8725 | 0.8954 | 0.8502 | 0.8723 | 0.9154 | |
| XGB | No | 0.7542 | 0.7754 | 0.7335 | 0.754 | 0.8154 |
| Yes | 0.7756 | 0.8054 | 0.7456 | 0.7754 | 0.8325 |
| ML model | SMOTE | ACC | RE | PR | F1 | AUC |
|---|---|---|---|---|---|---|
| SVM | No | 0.8235 | 0.8156 | 0.8421 | 0.8287 | 0.8876 |
| Yes | 0.8362 | 0.8475 | 0.8254 | 0.8363 | 0.8954 | |
| DT | No | 0.7952 | 0.7821 | 0.8095 | 0.7957 | 0.8523 |
| Yes | 0.8105 | 0.8234 | 0.7978 | 0.8105 | 0.8679 | |
| RF | No | 0.8176 | 0.8054 | 0.8302 | 0.8177 | 0.8754 |
| Yes | 0.8254 | 0.8395 | 0.8112 | 0.8252 | 0.8836 | |
| LR | No | 0.8025 | 0.7954 | 0.8102 | 0.8028 | 0.8615 |
| Yes | 0.8195 | 0.8321 | 0.8065 | 0.8193 | 0.8782 | |
| KNN | No | 0.8315 | 0.8254 | 0.8376 | 0.8314 | 0.8905 |
| Yes | 0.8392 | 0.8435 | 0.8354 | 0.8394 | 0.8985 | |
| XGB | No | 0.7854 | 0.7725 | 0.7985 | 0.7855 | 0.8425 |
| Yes | 0.7954 | 0.8095 | 0.7815 | 0.7954 | 0.8536 |
| ML model | SMOTE | ACC | RE | PR | F1 | AUC |
|---|---|---|---|---|---|---|
| SVM | No | 0.8254 | 0.8012 | 0.8423 | 0.8215 | 0.8652 |
| Yes | 0.8417 | 0.8495 | 0.8352 | 0.8423 | 0.8789 | |
| DT | No | 0.7925 | 0.7568 | 0.8211 | 0.788 | 0.8365 |
| Yes | 0.8103 | 0.8054 | 0.8154 | 0.8104 | 0.8492 | |
| RF | No | 0.8075 | 0.7895 | 0.8256 | 0.8073 | 0.8521 |
| Yes | 0.8231 | 0.8412 | 0.8054 | 0.823 | 0.8654 | |
| LR | No | 0.7854 | 0.7625 | 0.8095 | 0.7858 | 0.8312 |
| Yes | 0.8015 | 0.7954 | 0.8076 | 0.8015 | 0.8456 | |
| KNN | No | 0.8156 | 0.8025 | 0.8289 | 0.8157 | 0.8585 |
| Yes | 0.8324 | 0.8456 | 0.8195 | 0.8325 | 0.8712 | |
| XGB | No | 0.7542 | 0.7254 | 0.7854 | 0.7549 | 0.8054 |
| Yes | 0.7715 | 0.7654 | 0.7776 | 0.7715 | 0.8185 |
| Hyperparameter | SMOTE | ACC | RE | PR | F1 | AUC |
|---|---|---|---|---|---|---|
| Epoch=50, batch_size=64, learning_rate=1e-5 | No | 0.9054 | 0.9154 | 0.8956 | 0.9055 | 0.9425 |
| Yes | 0.9185 | 0.9354 | 0.9025 | 0.9184 | 0.9554 | |
| Epoch=50, batch_size=64, learning_rate=1e-4 | No | 0.9085 | 0.9254 | 0.8925 | 0.9084 | 0.9465 |
| Yes | 0.9215 | 0.9454 | 0.8975 | 0.9214 | 0.9584 | |
| Epoch=50, batch_size=64, learning_rate=1e-3 | No | 0.8955 | 0.8854 | 0.9055 | 0.8955 | 0.9385 |
| Yes | 0.9125 | 0.9354 | 0.8902 | 0.9124 | 0.9515 |
| Hyperparameter | SMOTE | ACC | RE | PR | F1 | AUC |
|---|---|---|---|---|---|---|
| Epoch=50, batch_size=64, learning_rate=1e-5 | No | 0.8675 | 0.8595 | 0.8754 | 0.8674 | 0.9254 |
| Yes | 0.8795 | 0.8854 | 0.8735 | 0.8795 | 0.9385 | |
| Epoch=50, batch_size=64, learning_rate=1e-4 | No | 0.8725 | 0.8678 | 0.8782 | 0.8727 | 0.9285 |
| Yes | 0.8842 | 0.8915 | 0.8765 | 0.884 | 0.9421 | |
| Epoch=50, batch_size=64, learning_rate=1e-3 | No | 0.8654 | 0.8585 | 0.8732 | 0.8656 | 0.9234 |
| Yes | 0.8812 | 0.8874 | 0.8751 | 0.8813 | 0.9392 |
| Hyperparameters | SMOTE | ACC | RE | PR | F1 | AUC |
|---|---|---|---|---|---|---|
| Epoch=50, batch_size=64, learning_rate=1e-5 | No | 0.8954 | 0.8854 | 0.9056 | 0.8955 | 0.9354 |
| Yes | 0.9125 | 0.9254 | 0.8995 | 0.9124 | 0.9485 | |
| Epoch=50, batch_size=64, learning_rate=1e-4 | No | 0.8954 | 0.8754 | 0.9156 | 0.8953 | 0.9325 |
| Yes | 0.9035 | 0.9154 | 0.8915 | 0.9032 | 0.9415 | |
| Epoch=50, batch_size=64, learning_rate=1e-3 | No | 0.8875 | 0.8654 | 0.9085 | 0.8865 | 0.9254 |
| Yes | 0.8962 | 0.9054 | 0.8875 | 0.8963 | 0.9345 |
Data are presented as n (%) or mean±standard deviation.
KAMIR, Korea Acute Myocardial Infarction Registry; MACE, major adverse cardiovascular event; CABG, coronary artery bypass grafting; CD, cardiac death; MI, myocardial infarction; Re-PCI, repeat percutaneous coronary intervention; BMI, body mass index; PCI, percutaneous coronary intervention; CK, creatine kinase; CK-MB, creatine kinase MB; LVEF, left ventricular ejection fraction; CAG, coronary angiography; TIMI, thrombolysis in myocardial infarction; HDL, high-density lipoprotein; LDL, low-density lipoprotein; LAD, left anterior descending artery; LCX, left circumflex artery; RCA, right coronary artery.
MACE, major adverse cardiovascular event; CABG, coronary artery bypass grafting; CD, cardiac death; MI, myocardial infarction; Re-PCI, repeat percutaneous coronary intervention.
ML, machine learning; XGBoost, extreme gradient boosting.
ML, machine learning; SMOTE, synthetic minority over-sampling technique; ACC, accuracy; RE, recall; PR, precision; F1, F1-score; AUC, area under the receiver operating characteristic curve; SVM, support vector machine; DT, decision tree; RF, random forest; LR, logistic regression; KNN, k-nearest neighbors; XGB, extreme gradient boosting.
ML, machine learning; SMOTE, synthetic minority over-sampling technique; ACC, accuracy; RE, recall; PR, precision; F1, F1-score; AUC, area under the receiver operating characteristic curve; SVM, support vector machine; DT, decision tree; RF, random forest; LR, logistic regression; KNN, k-nearest neighbors; XGB, extreme gradient boosting.
ML, machine learning; SMOTE, synthetic minority over-sampling technique; ACC, accuracy; RE, recall; PR, precision; F1, F1-score; AUC, area under the receiver operating characteristic curve; SVM, support vector machine; DT, decision tree; RF, random forest; LR, logistic regression; KNN, k-nearest neighbors; XGB, extreme gradient boosting.
DNN, deep neural network; SMOTE, synthetic minority over-sampling technique; ACC, accuracy; RE, recall; PR, precision; F1, F1-score; AUC, area under the receiver operating characteristic curve.
DNN, deep neural network; SMOTE, synthetic minority over-sampling technique; ACC, accuracy; RE, recall; PR, precision; F1, F1-score; AUC, area under the receiver operating characteristic curve.
DNN, deep neural network; SMOTE, synthetic minority over-sampling technique; ACC, accuracy; RE, recall; PR, precision; F1, F1-score; AUC, area under the receiver operating characteristic curve.